MediaPipe Iris



1. 用于虹膜追踪的机器学习管道
谷歌介绍道,开发系统的第一步利用了之前针对3D Face Meshes的研究,亦即通过高保真面部界标来生成近似面部几何形状的网格。根据所述网格,研究人员分离出原始图像中的眼睛区域以用于虹膜追踪模型。然后,谷歌将问题分为两个部分:眼睛轮廓估计和虹膜位置。他们设计了一个由一元化编码器组成的多任务模型,每个组件对应一个任务,这样就能够使用特定于任务的训练数据。



1. 用于虹膜追踪的机器学习管道
谷歌介绍道,开发系统的第一步利用了之前针对3D Face Meshes的研究,亦即通过高保真面部界标来生成近似面部几何形状的网格。根据所述网格,研究人员分离出原始图像中的眼睛区域以用于虹膜追踪模型。然后,谷歌将问题分为两个部分:眼睛轮廓估计和虹膜位置。他们设计了一个由一元化编码器组成的多任务模型,每个组件对应一个任务,这样就能够使用特定于任务的训练数据。