Binocular Light-Field: Imaging Theory and Occlusion-Robust Depth Perception Application

Binocular Light-Field

Abstract

Binocular stereo vision (SV) has been widely used to reconstruct the depth information, but it is quite vulnerable to scenes with strong occlusions. As an emerging computational photography technology, light-field (LF) imaging brings about a novel solution to passive depth perception by recording multiple angular views in a single exposure. In this paper, we explore binocular SV and LF imaging to form the binocular-LF imaging system. An imaging theory is derived by modeling the imaging process and analyzing disparity properties based on the geometrical optics theory. Then an accurate occlusion-robust depth estimation algorithm is proposed by exploiting multibaseline stereo matching cues and defocus cues. The occlusions caused by binocular SV and LF imaging are detected and handled to eliminate the matching ambiguities and outliers. Finally, we develop a binocular-LF database and capture realworld scenes by our binocular-LF system to test the accuracy and robustness. The experimental results demonstrate that the proposed algorithm definitely recovers high quality depth maps with smooth surfaces and precise geometric shapes, which tackles the drawbacks of binocular SV and LF imaging simultaneously.

Publication
IEEE Transactions on Image Processing

Related