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Abstract—The primitive basis of image based material recog-
nition builds upon the fact that discrepancies in the reflectances
of distinct materials lead to imaging differences under multiple
viewpoints. LF cameras possess coherent abilities to capture mul-
tiple sub-aperture views (SAIs) within one exposure, which can
provide appropriate multi-view sources for material recognition.
In this paper, a unified “Factorize-Connect-Merge* (FCM) deep-
learning pipeline is proposed to solve problems of light field image
based material recognition. 4D light-field data as input is initially
decomposed into consecutive 3D light-field slices. Shallow CNN is
leveraged to extract low-level visual features of each view inside
these slices. As to establish correspondences between these SAIs,
Bidirectional Long-Short Term Memory (Bi-LSTM) network
is built upon these low-level features to model the imaging
differences. After feature selection including concatenation and
dimension reduction, effective and robust feature representations
for material recognition can be extracted from 4D light-field
data. Experimental results indicate that the proposed pipeline
can obtain remarkable performances on both tasks of single-pixel
material classification and whole-image material segmentation.
In addition, the proposed pipeline can potentially benefit and
inspire other researchers who may also take LF images as input
and need to extract 4D light-field representations for computer
vision tasks such as object classification, semantic segmentation
and edge detection.

I. INTRODUCTION

Material recognition is crucial in scene understanding,
which can be widely applicable in human-computer interac-
tion, robotics, autonomous driving and so on. Since illumina-
tions are typically unknown, it is quite intractable to distin-
guish the material type by measuring the surface reflectance
or the bidirectional reflectance distribution function (BRDF).
Hence, prior works on 2D material recognition [1]-[8] mostly
depend on image appearance and shape cues, either classifying
instance-level textures or exploiting category-level properties.
Lack of multi-view analysis, these approaches usually fail to
generate plausible predictions when only parts of the objects
appear in the image or the materials look similar in colors
and textures. For instance, flowers printed on a paper may be
mistakenly categorized into the category of foliage.

An alternative way for material recognition is to consider
the discrepancies in the reflectance of distinct materials under
multiple viewpoints [9]. With additional optical components
like the micro-lens array inserted between the main lens and
the image sensor [10], light field (LF) cameras are capable
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of capturing both intensity and direction information of rays
from real-world scenes. Hence, LF cameras possess coherent
abilities to capture multiple sub-aperture images (SAls) within
one exposure [11], which can provide appropriate multi-view
sources for material recognition.

Recently, Wang et al. [12] introduce a mid-size light-
field image dataset captured by Lytro Illum camera, which
contains 12 categories of materials, each with 100 images
labeled with per pixel ground truth. In order to learn 4D
representations that are compatible with 2D CNN models,
they investigate several novel CNN architectures which take
remapped light-field images as input. By aggregating multi-
view information and reusing the spatial filters from previous
2D models, the best-performing Angular Filter structure in
[12] boosts the accuracy of single-pixel material classification
by 7% compared with single-view 2D prediction. The trained
patch model is altered to a fully convolutional model, which
performs material segmentation on an entire image. This sets
an important baseline for the tasks of light-field image based
material recognition.

Considering these CNN architectures, the basic idea is to
construct 4D-to-2D adaptors. In other words, the original
light-field images are firstly passed through such adaptors
which can aggregate the angular information and adapt input
4D data to 2D pre-trained networks. Take Angular Filter
method in [12] for example, the kernel size of the angular
filter itself is the same as angular resolution of remapped light-
field images, and the stride is consistent with its kernel size.
So after passing this layer, the 4D input reduces to the same
spatial size as 2D single-view input. The aggregated angular
information is then sent through the sequent 2D pre-trained
network. Besides, this mechanism prefer to combine informa-
tion from different views at a lower level. In brief, this series
of methods with 4D-to-2D adaptors transforms extracting 4D
light-field representations to multi-view aggregation and 2D
feature extraction.

However, we state that multi-view analysis for material
recognition needs to act more like “differentiating” rather
than “aggregating” in connecting the inconsistencies between
sub-aperture images (SAls). In this regard, we convert from
approaches with 4D-to-2D adaptors to a novel “Factorize-
Connect-Merge” (FCM) deep-learning pipeline to solve prob-



lems of light field image based material recognition. Specif-
ically, 4D light-field data as input is initially decomposed
into consecutive 3D light-field slices. Rather than extracting
high-level semantic features with deep networks, shallow
CNN without any pooling operations is leveraged to extract
low-level visual features of each view inside these slices.
Instead of combining multiple views to aggregate the angular
information, we adopt Bidirectional long-short term memory
(Bi-LSTM) network to differentiate the imaging differences
and connect the inconsistencies between these SAls. After
feature selection including concatenation and dimension re-
duction, effective and robust feature representations for ma-
terial recognition can be extracted from 4D light-field data.
Experimental results indicate that the proposed framework can
obtain remarkable performances on both tasks of single-pixel
material classification and whole-image material segmentation.
Compared with the best-performing Angular Filter method
in [12], the accuracy of single-pixel material classification
obtained by the proposed framework is 9% higher averaged
on 12 categories of materials in the datasets. In addition, the
proposed framework can potentially benefit and inspire other
researchers who may also take LF images as input and need
to extract 4D light-field representations for computer vision
tasks such as object classification, semantic segmentation and
edge detection.

II. RELATED WORK
A. Image-based Material Recognition

In the field of classical 2D material recognition, several
databases are published in the literature such as CUReT
[1], KTH-TIPS [2], Flickr Material Database (FMD) [3] and
Materials in Context Database (MINC) [8]. Among these
databases, MINC [8] is a large-scale dataset with 3 million
patches well-sampled across 23 categories of materials, where
both tasks of classifying materials from cropped 2D patches
and material segmentation in full images are tested on. Liu et
al. [4] propose a Bayesian generative framework to fuse low-
and mid-level features. For the sake of avoiding object-specific
information, visual material traits is introduced by Schwartz
and Nishino [13]. In subsequent work [14], they utilize partial
supervision to discover locally-recognizable material attributes
from crowdsourced perceptual material distances. Cimpoi et
al. [7] exploit object-oriented and texture-oriented features
which obtains superior results on FMD. However, these ap-
proaches working on 2D material recognition highly rely on
image appearance and contextual information such as shape
cues, and usually fail to generate plausible predictions when
only parts of the objects appear in the image or the materials
look similar in colors and textures.

LF cameras are able to capture a scene from multiple views
in a single photographic exposure, which supplies the data
source to measure the discrepancies in the reflectances of
distinct materials by multi-view analysis. Recently, Wang et
al. [12] capture a mid-size light field datasets using the Lytro
Illum camera. This dataset contains 12 categories of materials,
including Fabric, Foliage, Fur, Glass, Leather, Metal, Plastic,

Paper, Sky, Stone, Water and Wood, along with extra pixels
categorized into Other. Each class has 100 images, manually
classified and labeled the images with single-pixel material
category. Several novel CNN architectures are investigated
so as to reuse the spatial filters from previous 2D models,
consisting of 2D average, Viewpool, Stack, EPI, Angular filter
on remap image, 4D filter. The Angular Filter method achieves
the best performance among these architectures, which obtains
about 7% gain compared to using 2D input on the task
of single-pixel material classification. Similar to the training
strategy on 2D images in [8], the Angular Filter model is
firstly trained on image patches and then converted to a
fully convolutional model, finally fine-tuned on entire images.
The datasets and CNN architectures act as good baselines
for light-field image based material recognition. However,
these CNN structures are specially designed to learn 4D
representations that are compatible with 2D CNN models. The
4D-to-2D adaptors just as Angular Filter layer are constructed
to aggregate the angular information from the SAIs of input
light field images. Rather, we propose to differentiate the
imaging differences under multiple viewpoints by connecting
the inconsistencies between SAIs with Bi-LSTM. Meanwhile,
low-level visual features of each view is extracted using
shallow CNN without any pooling layers.

B. Deep-learning Approaches Working on LF Data

Unlike the pipelines dealing with 2D matrix e.g. images
or 3D volume e.g. videos, it is quite a sticky problem to
manipulate the high-dimensional LF data with plain CNN
currently. To our best knowledge, Yoon et al. [15], [16] are
the first to apply CNN framework to the research of light field
super resolution (LFSR). They propose a new deep learning
structure called LFCNN composed of a spatial SR network
and an angular SR network to jointly increase the spatial
and angular resolution. Wang et al. [17] propose LFNet and
incorporate implicitly multi-scale fusion scheme into bidirec-
tional recurrent convolutional neural network. Zhang et al. [18]
propose a learning-based method using residual convolutional
networks on stacked views to reconstruct light fields with
higher spatial resolution. Yeung et al. [19] approximate 4D
convolution with spatial-angular separable convolutions for
extraction of spatial-angular joint features.

Kalantari et al. [20] propose the first deep learning system
for light field reconstruction. Srinivasan et al. [21] build on
the pipeline in [20] to synthesize a 4D RGBD LF from a
single 2D RGB image. Jin et al. [22] focus on generating
densely-sampled LFs with sparsely- and arbitrarily-sampled
sub-aperture images (SAIs), which relieve the restriction on
the regularity of the sampling pattern. Wu et al. [23] pro-
pose EPICNN and model view synthesis as learning-based
angular detail restoration on 2D epipolar plane images (EPIs).
Yeung et al. [24] adopt a coarse-to-fine strategy in a deep-
learning framework to exploit the high dimensional spatial-
angular clues inside 4D light field data. In [25], Wang et al.
propose Pseudo 4DCNN which are assembled by 2D strided
convolutions operated on stacked EPIs and detail-restoration
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cropped 4D patch is categorized into the category of Metal is shown.

3D CNNs connected with angular conversion. Wu et al. [26]
decompose the task of light field reconstruction as learning
sheared EPI structure. Heber et al. [27] learns an end-to-end
mapping between the 4D light field and a representation of
the corresponding 4D depth field in terms of 2D hyperplane
orientations. Further, Heber er al. [28] propose a U-shaped
fully convolutional network that involves an encoding and a
decoding part for shape from light field. Shin et al. [29] also
adopts the structure of fully-convolutional neural network and
introduce EPINET to estimate depth from light field images.

To sum up, the aforementioned deep-learning approaches
working on LF data are proposed for the purpose of spatial
super resolution [15]-[19], view synthesis [20]-[26] and depth
estimation [27]-[29]. Except several CNN architectures pro-
posed in [12], there are scarcely deep-learning frameworks
tailored for material recognition currently. In this paper, we
propose a novel “Factorize-Connect-Merge” (FCM) deep-
learning pipeline to solve problems of light field image based
material recognition.

III. PROPOSED METHOD

The details of the proposed pipeline, i.e. “Factorize-
Connect-Merge” (FCM) deep-learning is described in this
chapter. This pipeline is proposed to solve problems of light
field image based material recognition in this paper. Specif-
ically, 4D light-field data as input is initially decomposed
into consecutive 3D light-field slices. Shallow CNN without
any pooling layers is leveraged to extract low-level visual
features of each view inside these slices. Next, we adopt
Bidirectional long-short term memory (Bi-LSTM) network to

Schematic of the novel pipeline (Factorize-Connect-Merge, FCM) for light field image based material recognition. Specifically, the process that a

differentiate the imaging differences and connect the inconsis-
tencies between these SAIs. After feature selection including
concatenation and dimension reduction, effective and robust
feature representations for material recognition can be ex-
tracted from 4D light-field data. Inspired by the procedures
in [8] and [12], we also train a patch model which classifies
single-pixel categories of material firstly and then convert the
patch model to a whole-image model which performs material
segmentation.

A. Factorize 4D LF data

Throughout this chapter, 4D LF data as input are denoted
as L, (u,v,z,y) decoded from the original LF image with
the resolution N x N x H x W. It should be noted that NV
is supposed to be odd here. For cropped 4D patches to train
the patch model, the angular resolution is the same as full
4D LF data but the spatial resolution is S x .S, where S is
the pre-set patch size. Based on the disparity-shift relations to
central SAI, 4D light-field data is initially decomposed into
consecutive 3D light-field slices. Firstly, horizontal 3D light-
field data L, (p,x,y) is denoted as

Lh(v*axay) = Lin(U*7’U*7xay) (1)
where u* = floor(N/2) + 1 and v* € {1,2,...,N}. Left-
diagonal 3D light field data L;(p,x,y) is denoted as

Ll(U*vir?y) :Lin(U*av*axvy) (2)

where (u*,v*) € {(1,1),(2,2), ...,
field data L, (p,z,y) is denoted as

(N, N)}. Vertical 3D light



LU(U*amvy) = Lin(U’*aU*axay) (3)

where u* € {1,2,..., N} and u* = floor(N/2) + 1. Right-
diagonal 3D light field data L,(p,x,y) is denoted as

LT(U*vxay) :Lin(U*av*axvy) (4)

where (u*,v*) € {(1I,N),(2,N —1),...,(N,1)}.

As shown in Fig.1, disparity shift between adjacent SAIs
inside these 3D light-field slices are constant as they are
seen through regularly-spaced portions of the main lens inside
the LF camera despite that the affiliated epipolar planes are
different from one another. From this point of view, these
fractions of the original 4D LF data are more appropriate to
discern the imaging differences and intensity variations under
multiple views, which is also more efficient than feeding all
the SAIs into the network. Moreover, 3D light-field slices can
be bidirectionally analyzed and modelled, i.e. in forward and
backward manners.

B. Connect multi-view inconsistency

It is mainly divided into two steps to connect the incon-
sistencies between SAls inside 3D light-field slices. The first
step is to extract low-level visual features of each view. The
cropped 4D patches for single-pixel material classification
only contain a portion of the contextual information around
the central pixel to be classified in each SAI. Considering this
observation, deep CNNs are not utilized to extract mid- or
high-level semantic features, like object classes, shapes and
SO on.

The structure of shallow CNN adopted in the proposed
framework is depicted as Fig.2, consisting of four convolu-
tional layers and one flatten layers. The kernel size of all the
convolutional layers is 5 x 5 with stride 2. Note that all the
convolutional layers are activated by the rectified linear unit
(ReLU), i.e. o(z) = max(0,2), while the last layer flattens
the feature map of the penultimate layer into a vector.

128x128x3

64x64x8

32x32x16

4096
16x16x32 ]
8x8x64

Conv4@5x5 \
Stride 2 AN
N
Flatten

Conv3@5x5
Stride 2
Conv2(@5x5

Stride 2
Conv1@5x5

Stride 2

Fig. 2. The structure of shallow CNN.

Noticeably, there are no pooling layers inside the shallow
CNN. As known, pooling operations can benefit deep CNNs in
extracting semantic features invariant to color jittering, scales,
translations and rotations, which is of vital importance in
high-level vision tasks, like object recognition. Instead, the
substantial features for material recognition such as imaging
differences and intensity variations may be wiped away to
large extent by max-pooling or average-pooling. To preserve
the pixel-level inconsistencies, we substitute pooling opera-
tions with stride 2 to downsample the input feature maps.

After extracting low-level vision textures from each view,
they are organized into sequence as Eq.5, where Fy.(-)
and © denotes the operators and parameters of the shallow
CNN, p; denotes the patches or images from each view,
te{l,2,...,N}.

{Fsc(pla(—))aFSC(p27@);"'7FSC(pN7@)} (5)

Next, Hy(p,z,y) 15 sent through a Bi-LSTM [30] to connect
the inconsistencies between SAIs as Eq.6.

Hipay) =

fL(p,x,y) = Fyitstm (HL(p,:z,y)’ <I)) (6)

where Fy;5¢m (+) and @ are the operators and parameters of the
adopted Bi-LSTM, [y .,y is the feature vector representing
one 3D light field slice.

Typically, Bi-LSTM is applied in the fields of text gen-
eration [31], visual question answering [32] and video-based
action recognition [33] for the sake of sequence prediction
and spatio-temporal feature extraction. Here, we employ Bi-
LSTM to selectively “remembering” and ‘“forgetting” the
discernable inconsistencies caused by reflectance differences
between adjacent (short-term) and interval-spaced (long-term)
SAls.

View2  View3 View 4 View5

View 1

Fig. 3. The structure of specified Bi-LSTM in detail. Take 5 SAIs in 3D light
field slices for example.



The structure of specified Bi-LSTM in detail is drawn in
Fig.3. The low-level feature of each view is put into the
LSTM unit in order as x; of each time-step. The forward
and backward path models the inconsistencies of imaging
differences and outputs the hidden state as a 128d vector.
The hidden state of the first and last time-step are chosen as
the representation and concatenated together to yield a 256d
vector fr(, 2.y, While the hidden states of other time-steps
are neglected. {fn, fi, fu, fr} represents feature vector for
Lh(paxvy)’ Ll(pvxvy)’ Lv(pax,y)’ Lr(p,mvy) respectively.

It should be noted that the shallow CNN and Bi-LSTM
in the proposed framework are weight-sharing and jointly-
learning.

C. Merge 4D LF representations

In the last step of the proposed framework, we merge the
feature vectors { [}, fi, fu, [~} Firstly, they are concatenated
together to form a 1024d vector f,, as Eq.7.

fm = Concat(fhvflafmfr) @)

where the operator concat(-) means concatenation. Next, a
Fully Connected (FC) is followed for feature selection and
dimension reduction, which aims to compress 4 groups of
feature vectors into one and finds the most discriminative
feature. This FC layer outputs a 256d vector f, which is the
feature vector for material recognition. Finally, f, is connected
to another FC layer and Softmax layer, which yields a 12d
vector Py, qteriar With each dimension denoting the probability
belonging to one category of material.

Inspired by the strategy in [8] and [12] when converting
a trained patch model to a FCN model on full images, we
remove the flatten layer in the shallow CNN. Besides, the
Bi-LSTM is modified to similar ConvLSTM which takes
sequences of feature maps as input rather than sequences
of vectors in 4D patch model. The model for whole-image
material segmentation is fine-tuned by reusing the weights of
filters in the unchanged layers of pre-trained patch model.

D. Datasets and Training Details

To train the proposed framework, we utilize the light field
material recognition datasets released by Wang er al. [12].
This dataset comprises 12 categories of materials and 100 LF
images are captured with Lytro [llum camera for each category.
Among these LF images, the material belonging to its category
occupy large portions of the scene. The spatial resolution is
376 x 541 and angular resolution is 14 x 14. Every pixel in
central view of these LF images is manually annotated with
its material category.

For fair comparisons, we follow the same protocol in [12]
to generate the training datasets. For single-pixel material
classification, we crop 128 x 128 spatial region containing
contextual information from the same position of 7x7 SAIs. In
total, over 3 x 10% samples with the resolution 128 x 128 x 7x 7
are extracted from original LF images. It should be noted
that such 4D patch can be regarded as a valid sample only
if more than 50% of the pixels belong to the same category

of materials. We follow the same protocol in [12] to split
the training and test datasets. To separate similar or duplicate
samples, all 4D patches cropped from the same LF image only
appear either in training or in test set.

The optimization of end-to-end training is conducted by the
mini-batch Adam [34] stochastic optimization method with a
batch size of 64. The learning rate is initially set to 1 x 1073
and then decreased by a factor of 0.1 every 10 epochs until
the validation loss converges, (31 to 0.9, 85 to 0.99. The filters
of shallow CNNs are initialized from a zero-mean Gaussian
distribution with standard deviation 0.01 and all the bias are
initialized to zero. In the structure of Bi-LSTIM, rectified
linear unit (ReLU) is employed as activation function for the
convolutional layers and hard sigmoid is chosen as activation
function for the recurrent step. The weights for the linear
transformation of inputs and the recurrent state are initialized
from Xavier [35] distribution. Except that the bias of inner
forget gate is set to 1, other bias are set to 0. The proposed
framework FCM is implemented using Keras package [36] and
runs on a workstation with an Intel 3.6 GHz CPU and a TiTan
X GPU. It takes less than 50 epochs to converge.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed framework, we
compare with MINC VGG model [8] fine-tuned on 2D central
view of 4D patches in the datasets and the best-performing An-
gular Filter method in [12]. The source codes of these methods
are searched online or supplied by the authors. Moreover, the
released models are carefully re-trained, attempting to obtain
the maximum performances for comparisons.

A. Single-pixel Material Classification

The quantitative results of single-pixel material classifica-
tion on the 4D patch datasets is tabulated in Table.I. As can
be seen, the Angular Filter method [12] increases the accuracy
by 6% on average compared with MINC VGG model trained
on 2D central view of these 4D patches. It is mainly due to
the property that Angular Filter [12] discriminates multi-view
imaging differences by convolving on macro-pixels grouped
by a set of pixels from the same position of each SAI and then
transferring to traditional 2D pixel-level material prediction.

TABLE 1
ACCURACY ON SINGLE-PIXEL MATERIAL CLASSIFICATION.

[ Material Classes | MINC VGG [8] [ Angular Filter [12] ] Ours |
Fabric 0.59 0.65 0.88(+0.23)
Foliage 0.88 0.92 0.97(+0.05)

Fur 0.7 0.78 0.82(+0.04)
Glass 0.69 0.65 0.83(+0.18)
Leather 0.8 0.91 0.92(+0.01)
Metal 0.66 0.73 0.82(+0.09)
Paper 0.49 0.6 0.82(+0.22)
Plastic 0.45 0.5 0.71(+0.21)
Sky 0.98 0.98 0.95(-0.03)
Stone 0.81 0.87 0.92(+0.05)
Water 0.87 0.92 0.94(+0.02)
Wood 0.62 0.73 0.85(+0.08)
Average 0.71 0.77 0.86(+0.09)




The proposed pipeline FCM is distinct to the former
approaches that need adaptors like Angular Filter [12] to
transform from 4D LF data to conventional 2D prediction.
Rather, FCM adopts shallow CNNs to extract low-level visual
features and Bi-LSTM to elaborately model the imaging differ-
ences between adjacent SAIs. Attributing to these properties,
FCM gains significant improvements over Angular Filter [12]
and boosts the accuracy of single-pixel material classification
by 9% on average. Especially, the accuracy of classification
results on some confusing materials rises by a large margin,
such as Fabric (+23%), Paper (+22%) and Plastic (+21%). It
is noticed that the accuracy on the category of Sky is a bit
lower (-3%) than Angular Filter [12]. The underlying reasons
are mainly because that the samples of Sky in the datasets
are captured under various weathers like sunny or cloudy.
This phenomenon from a side manifests that the proposed
framework FCM is more sensitive to the changes of material
itself in multi-view analysis.
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Fig. 4. The confusion matrix of single-pixel material classification. (a)
Angular Filter [12]. (b) Ours.

Additionally, the confusion matrixes of Angular Filter
method [12] and the propose framework FCM on Single-pixel
Material Classification are shown in Fig.4. It is clear that FCM
not only promotes the accuracy of material recognition on
nearly all categories but also separates confusing materials
such as Fabric, Paper, Plastic, Glass more precisely. In total,
FCM can prominently boost the performance of single-pixel
material classification.

B. Whole-image Material Segmentation

To evaluate qualitative results of whole-image material seg-
mentation, we compare with MINC VGG model [8], Angular
Filter method in [12] and Ground Truth(GT) material label
images. According to the number of materials appearing in
the image, results are shown in Fig.6-7.

Firstly, when there exists only one category of materials in
the scene, the proposed framework FCM can almost perfectly
classify all the pixels into belonging categories as shown in
Fig.6. At the same time, the predicted material segmentation
by FCM is nearly the same as GT labeling image, which
obviously outperforms MINC VGG model [8] and [12]. Some
tiny errors only occur around the corners of the image, which
may be caused by irrelevant contextual information absorbed
from zero-padding effect during inference.
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Fig. 5. Ablation Experiments. The green dashed line denotes the performance
of Angular Filter in [12], i.e. 77% averaged on 12 categories of materials. (a)
Number of SAIs in input LF data. (b) Number of layers in shallow CNNs.

As can be seen from Fig.7, when there are two or more
categories of materials in the scene, the proposed framework
can yield satisfying material segmentation results. Especially,
FCM still works even the objects are occluded each other, or
the textures and colors of the materials are in similar pattern.
FCM can not only obtain rather accurate pixel classifications
inside the same material region, but also preserve sharp and
clear boundaries of the material-segmented instances. Com-
pared with 2D predictions in [8] and Angular Filter methods
in [12], the proposed framework is more stable in complex
scenes and obtains better segmentation results. These results
demonstrate the superiority of our methods.

C. Ablation Study

To further demonstrate the effectiveness of the configura-
tions in the proposed pipeline, ablation experiments of single-
pixel material classifications are conducted on the number of
layers of shallow CNN and number of SAIs in the consecutive
3D slices. The results are depicted in Fig.5. Note that the
network structure of shallow CNN is quite simple, adding
more layers and extracting deeper features will not obtain
prominent improvements. On the other hand, less layers are
not enough to capture sufficient receptive field which brings an
obvious drop in the accuracy of single-pixel classifications. As
we include 2 more layers, i.e. from 4 to 6 layers, the accuracy
averaged on 12 categories of materials boosts just 0.26% (9%
to 9.26%) than [12]. If shallow CNNs are reduced to 2 layers,
i.e. from 4 layers to 2 layers, the accuracy drops 1.82% (9% to
7.18%) than [12]. Moreover, number of SAIs in consecutive
3D slices is a key factor. 4D LF with angular resolution 3x3,
5x5, 7x7, 9x9 gain 2.35%, 6.58%, 9%, 9.52% improvement
on accuracy averaged on 12 categories of material types than
[12] respectively. Taking balanced performance into account,
although 9x9 gains 0.52% higher than 7x7 SAls, but such
LF input consumes big storage and the whole-image material
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Fig. 6. The results of whole-image material segmentation under the circumstances that one category of materials occupies the majority of the scene. (a)
Central SAI of input LF image. (b) Ground Truth. (c) 2D predictions by MINC VGG model [8]. (d) Angular Filter [12]. (e) Ours.
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Fig. 7. The results of whole-image material segmentation under the circumstances that there exist two or more categories of materials in the scene. (a) Central
SAI of input LF image. (b) Ground Truth. (c) 2D predictions by MINC VGG model [8]. (d) Angular Filter [12]. (e) Ours.

segmentation model is too large to be trained or tested on
typical GPU cards so that 7x7 LF input can be considered as
better options for practical applications.

V. CONCLUSION

Rather than following the approaches with 4D-to-2D adap-
tors, a novel “Factorize-Connect-Merge” (FCM) deep-learning
pipeline is proposed to solve problems of light field image
based material recognition in this paper. 4D light-field data
as input are factorized into 3D slices. Shallow CNN and Bi-
LSTM are leveraged to differentiate the imaging differences
and connect the inconsistencies between SAIs caused by

reflectances of distinct materials. The features from separated
3D slices are then merged together by feature selection and
dimension reduction. The proposed framework can extract
effective and robust feature for 4D light filed representations.
It is experimentally verified that the proposed framework can
obtain remarkable performances on both tasks of single-pixel
material classification and whole-image material segmentation,
which set a higher baseline for LF image based material
recognition. As this pipeline is compatible with other vision
tasks, researchers who may also take LF images as input and
need to extract 4D light-field representations will benefit from
this work.
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