

Recognition Oriented Iris Image Quality Assessment in the Feature Space

> Leyuan Wang, Kunbo Zhang, Min Ren , Yunlong Wang, Zhenan Sun

School of Artificial Intelligence, UCAS Center for Research on Intelligent Perception and Computing National Laboratory of Pattern Recognition, CASIA

October 1st, 2020

Outline

- Main idea
- Comparison with traditional methods
- Dataset & Evaluation criteria
- Experimental result
- Future work

From Iris to Embedding

• Theoretically, for any iris, an unique embedding in the feature space can be obtained through a specific iris recognition system.

- Iris (anatomy)*
 - Henry Vandyke Carter and one more author Henry Gray (1918) Anatomy of the Human Body (See "Book" section below) Bartleby.com: Gray's Anatomy, Plate 878

From Iris to Embedding

From Iris to Embedding

Quality metric: DFS

- Hypothesis: the difference
 between all acquired images and
 the true iris image are all quality
 degrade
- The Distance between an
 embedding of acquired image and
 the true embedding of in the
 Feature Space (DFS) can be
 used as quality metric.

• A deep neural network to directly predict the DFS of the input image and its corresponding true embedding

• Segmentation module generate a rough segmentation result as the heatmap required by the attention-based pooling module.

• The size of the heatmap is a quarter of the original image, and the value of each pixel represents the probability that the pixel belongs to iris.

- High-level feature map contains enough information to predict DFS.
- Multiplying high-level features map with heatmap can suppress the response of non-iris regions.

Traditional hand-crafted quality factors

Hand-crafted factor	Impairment				
Sharpness	Defocus, Compression				
Off-angle	Optical axis of camera and eye not lined up				
Usable iris	Occlusion (reflections, eye-wear. etc.)				
Gray level spread	Illumination, Saturation				
Dilation	Ambient light, Intrinsic				

- ISO/IEC 29794-6:2015(E), Information technology Biometric sample quality — Part 6: Iris image data
- NISTIR, Iris Quality Calibration and Evaluation (IQCE): Evaluation Report

Fusion and multi-step methods

Comparison with traditional methods

Hand-crafted factors based methods

Complex and separate from recognition

DFS based method

• A trial to bridge the gap between the image quality assessment and biometric recognition.

Dataset: CASIA-Iris-Complex

- CX1 (left): Non-cooperative subject
- CX2 (right): Uncontrolled environment & long distance situation

Dataset: CASIA-Iris-Complex

Dataset	EER
ND-IRIS-0405	1.39%
CASIA-Iris-Thousand	1.72%
CASIA-Iris-CX1 (all images)	12.41%
CASIA-Iris-CX1 (ideal images)	1.28%
CASIA-Iris-CX2 (all images)	28.59%
CASIA-Iris-CX2 (ideal images)	16.46%

Table 3. Recognition performance on different datasets

- Fig1-5: Quality score distribution of hand-crafted factors
- Table: Recognition performance on different datasets
- Iris segmentation and recognition algorithms
 - Q. Zhang, H. Li, Z. Sun, and T. Tan. Deep feature fusion for iris and periocular biometrics on mobile devices. IEEE Transactions on Information Forensics and Security, 13(11):2897–2912, Nov 2018.
 - C. Wang, Y. Zhu, Y. Liu, R. He, and Z. Sun. Joint iris segmentation and localization using deep multi-task learning framework. arXiv preprint arXiv:1901.11195, 2019.

Image Rejection Rate (IRR)

- In an iris recognition system, low-quality images are discards. The more images that are discarded, the more likely it is to timeout.
- Image rejection rate (IRR) which is related to the possibility of iris recognition system timeout.
- The relationship between IRR and Equal Error Rate (EER) to measure the performance of quality assessment algorithm.

Performance of quality assessment

EER@IRR	0		0.25		0.5		0.75		0.95	
dataset	CX1	CX2	CX1	CX2	CX1	CX2	CX1	CX2	CX1	CX2
DFS	12.41	28.5	2.91	15.23	0.31	3.92	0.00	0.56	0.00	0.00
Ours	12.41	28.5	6.52	19.89	1.92	14.06	1.44	7.09	0.40	5.14
Sharpness	12.41	28.5	11.99	25.48	11.40	24.75	10.58	23.48	10.63	25.08
Iris size	12.41	28.5	10.04	26.48	8.67	27.93	6.14	30.00	5.81	27.85
Dilation	12.41	28.5	12.42	26.05	12.81	26.76	13.21	22.79	9.61	17.12
GLS	12.41	28.5	12.68	28.92	13.02	29.27	14.57	27.10	18.21	5.94
Usable are	12.41	28.5	10.93	26.54	11.49	26.88	10.75	27.15	4.68	32.29

Conclusions

- Embeddings distance in feature space (DFS)
- DFS prediction network
- Dataset: CASIA-IRIS-Complex
- Image rejection rate (IRR)

THANK YOU

Suggestions Questions